Multisource datasets integration: population weighted temperature from ERA5 and¶
This notebook will provide you guidance on how to access and use the https://data.earthdatahub.destine.eu/era5/reanalysis-era5-single-levels-v0.zarr dataset on Earth Data Hub, together with the Hybrid gridded demographic data for the world dataset https://data.earthdatahub.destine.eu/derived-GPWv4-Histsoc/demographics-hybrid-1950-2020-15-min-v0.
ERA5 single level data contains variables describing the global climate and weather for the past 8 decades. Data is available from 1940 onwards on a regular lat-lon grid of 0.25 degrees.
The Hybrid gridded demographic totals for the world contains the 1950-2020 demographic given as 5-year population bands at a 0.25 degree grid resolution.
Goal of this tutorial¶
The goal of this tutorial is to visualize the area-averaged temperature in Europe as a function of time, and compare it with the population-averaged temperature.
What you will learn:¶
- how to access the data
- select and reduce the data
- use different datasets together
- plot the results
To access datasets on Earth Data Hub (EDH) you need to instruct your tools (xarray, Zarr, etc.) to use EDH personal access token when downloading the data.
To obtain a personal access token you first need to register to the Destination Earth platform platform. Then you can go to Earth Data Hub account settings where you can find your default personal access token or create others. After retrieving your personal access token, please cut and paste it below: ⤵
PAT = "your_personal_access_token"
# e.g. PAT="edh_pat_44bbb7e9192a4c6bb47ddf07d07564eee5d17de8dfc48f7118f88e3bc4a4157f8fe2403f5aa0a2d53441b6922ea9a33a"
Working with EDH data¶
Datasets on Earth Data Hub are often very large and remotely hosted. Typical use imply a selection of the data followed by one or more reduction steps to be performed in a local or distributed Dask environment.
The structure of a workflow that uses EDH data tipically looks like this:
- data access
- data selection
- (optional) data reduction
- data download
- further operations and visualization
Xarray and Dask work together following a lazy principle. This means that when you access and manipulate a Zarr store the data is in not immediately downloaded and loaded in memory. Instead, Dask constructs a task graph that represents the operations to be performed.
A smart user will first reduce the amount of data that needs to be downloaded and explicitly call compute()
on it. Once the compute()
operation is complete the data is loaded into memory and available for subsequent fast processing.
Preparing the population data¶
1. Data access¶
To access the data, only the dataset metadata must be downloaded. Xarray does this automatically when you access a Zarr dataset.
import xarray as xr
world_population = xr.open_dataset(
"https://hedp-data.bopen.eu/public/derived-GPWv4-Histsoc/demographics-hybrid-1950-2020-15-min-v0",
chunks={},
engine="zarr",
)
world_population = world_population.demographic_totals
world_population
<xarray.DataArray 'demographic_totals' (latitude: 720, longitude: 1440, age_band_lower_bound: 14, year: 71)> Size: 4GB dask.array<open_dataset-demographic_totals, shape=(720, 1440, 14, 71), dtype=float32, chunksize=(64, 64, 14, 71), chunktype=numpy.ndarray> Coordinates: * age_band_lower_bound (age_band_lower_bound) int64 112B 0 5 10 ... 55 60 65 * latitude (latitude) float64 6kB 90.0 89.75 ... -89.5 -89.75 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 * year (year) int64 568B 1950 1951 1952 ... 2018 2019 2020
- latitude: 720
- longitude: 1440
- age_band_lower_bound: 14
- year: 71
- dask.array<chunksize=(64, 64, 14, 71), meta=np.ndarray>
Array Chunk Bytes 3.84 GiB 15.53 MiB Shape (720, 1440, 14, 71) (64, 64, 14, 71) Dask graph 276 chunks in 2 graph layers Data type float32 numpy.ndarray - age_band_lower_bound(age_band_lower_bound)int640 5 10 15 20 25 ... 45 50 55 60 65
array([ 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65])
- latitude(latitude)float6490.0 89.75 89.5 ... -89.5 -89.75
array([ 90. , 89.75, 89.5 , ..., -89.25, -89.5 , -89.75])
- longitude(longitude)float640.0 0.25 0.5 ... 359.2 359.5 359.8
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
- year(year)int641950 1951 1952 ... 2018 2019 2020
array([1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020])
- age_band_lower_boundPandasIndex
PandasIndex(Index([0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65], dtype='int64', name='age_band_lower_bound'))
- latitudePandasIndex
PandasIndex(Index([ 90.0, 89.75, 89.5, 89.25, 89.0, 88.75, 88.5, 88.25, 88.0, 87.75, ... -87.5, -87.75, -88.0, -88.25, -88.5, -88.75, -89.0, -89.25, -89.5, -89.75], dtype='float64', name='latitude', length=720))
- longitudePandasIndex
PandasIndex(Index([ 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, ... 357.5, 357.75, 358.0, 358.25, 358.5, 358.75, 359.0, 359.25, 359.5, 359.75], dtype='float64', name='longitude', length=1440))
- yearPandasIndex
PandasIndex(Index([1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020], dtype='int64', name='year'))
The longitude of the dataset is set from 0 to 360 degrees, which makes it uncomfortable to deal with data in the European area when using xarray:
world_population.sel(age_band_lower_bound=0, year=2020).plot(vmax=50_000, cmap="YlGnBu_r")
<matplotlib.collections.QuadMesh at 0x7f571d6dcf50>
We can roll the longitude to a -180 to 180 extent:
xr.set_options(keep_attrs=True)
world_population = world_population.assign_coords(longitude=(((world_population.longitude + 180) % 360) - 180))
world_population = world_population.roll(longitude=int(len(world_population.longitude) / 2), roll_coords=True)
world_population
<xarray.DataArray 'demographic_totals' (latitude: 720, longitude: 1440, age_band_lower_bound: 14, year: 71)> Size: 4GB dask.array<rechunk-merge, shape=(720, 1440, 14, 71), dtype=float32, chunksize=(64, 64, 14, 71), chunktype=numpy.ndarray> Coordinates: * age_band_lower_bound (age_band_lower_bound) int64 112B 0 5 10 ... 55 60 65 * latitude (latitude) float64 6kB 90.0 89.75 ... -89.5 -89.75 * year (year) int64 568B 1950 1951 1952 ... 2018 2019 2020 * longitude (longitude) float64 12kB -180.0 -179.8 ... 179.5 179.8
- latitude: 720
- longitude: 1440
- age_band_lower_bound: 14
- year: 71
- dask.array<chunksize=(64, 64, 14, 71), meta=np.ndarray>
Array Chunk Bytes 3.84 GiB 15.53 MiB Shape (720, 1440, 14, 71) (64, 64, 14, 71) Dask graph 276 chunks in 6 graph layers Data type float32 numpy.ndarray - age_band_lower_bound(age_band_lower_bound)int640 5 10 15 20 25 ... 45 50 55 60 65
array([ 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65])
- latitude(latitude)float6490.0 89.75 89.5 ... -89.5 -89.75
array([ 90. , 89.75, 89.5 , ..., -89.25, -89.5 , -89.75])
- year(year)int641950 1951 1952 ... 2018 2019 2020
array([1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020])
- longitude(longitude)float64-180.0 -179.8 ... 179.5 179.8
array([-180. , -179.75, -179.5 , ..., 179.25, 179.5 , 179.75])
- age_band_lower_boundPandasIndex
PandasIndex(Index([0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65], dtype='int64', name='age_band_lower_bound'))
- latitudePandasIndex
PandasIndex(Index([ 90.0, 89.75, 89.5, 89.25, 89.0, 88.75, 88.5, 88.25, 88.0, 87.75, ... -87.5, -87.75, -88.0, -88.25, -88.5, -88.75, -89.0, -89.25, -89.5, -89.75], dtype='float64', name='latitude', length=720))
- yearPandasIndex
PandasIndex(Index([1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020], dtype='int64', name='year'))
- longitudePandasIndex
PandasIndex(Index([ -180.0, -179.75, -179.5, -179.25, -179.0, -178.75, -178.5, -178.25, -178.0, -177.75, ... 177.5, 177.75, 178.0, 178.25, 178.5, 178.75, 179.0, 179.25, 179.5, 179.75], dtype='float64', name='longitude', length=1440))
world_population.sel(age_band_lower_bound=0, year=2020).plot(vmax=50_000, cmap="YlGnBu_r")
<matplotlib.collections.QuadMesh at 0x7f571d72eb10>
2. Data selection¶
On the world data, we perform a geographical selection corresponding to continental Europe:
europe_population = world_population.sel(latitude=slice(71, 36), longitude=slice(-10,35))
europe_population
<xarray.DataArray 'demographic_totals' (latitude: 141, longitude: 181, age_band_lower_bound: 14, year: 71)> Size: 101MB dask.array<getitem, shape=(141, 181, 14, 71), dtype=float32, chunksize=(64, 64, 14, 71), chunktype=numpy.ndarray> Coordinates: * age_band_lower_bound (age_band_lower_bound) int64 112B 0 5 10 ... 55 60 65 * latitude (latitude) float64 1kB 71.0 70.75 70.5 ... 36.25 36.0 * year (year) int64 568B 1950 1951 1952 ... 2018 2019 2020 * longitude (longitude) float64 1kB -10.0 -9.75 ... 34.75 35.0
- latitude: 141
- longitude: 181
- age_band_lower_bound: 14
- year: 71
- dask.array<chunksize=(52, 24, 14, 71), meta=np.ndarray>
Array Chunk Bytes 96.77 MiB 15.53 MiB Shape (141, 181, 14, 71) (64, 64, 14, 71) Dask graph 12 chunks in 7 graph layers Data type float32 numpy.ndarray - age_band_lower_bound(age_band_lower_bound)int640 5 10 15 20 25 ... 45 50 55 60 65
array([ 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65])
- latitude(latitude)float6471.0 70.75 70.5 ... 36.5 36.25 36.0
array([71. , 70.75, 70.5 , 70.25, 70. , 69.75, 69.5 , 69.25, 69. , 68.75, 68.5 , 68.25, 68. , 67.75, 67.5 , 67.25, 67. , 66.75, 66.5 , 66.25, 66. , 65.75, 65.5 , 65.25, 65. , 64.75, 64.5 , 64.25, 64. , 63.75, 63.5 , 63.25, 63. , 62.75, 62.5 , 62.25, 62. , 61.75, 61.5 , 61.25, 61. , 60.75, 60.5 , 60.25, 60. , 59.75, 59.5 , 59.25, 59. , 58.75, 58.5 , 58.25, 58. , 57.75, 57.5 , 57.25, 57. , 56.75, 56.5 , 56.25, 56. , 55.75, 55.5 , 55.25, 55. , 54.75, 54.5 , 54.25, 54. , 53.75, 53.5 , 53.25, 53. , 52.75, 52.5 , 52.25, 52. , 51.75, 51.5 , 51.25, 51. , 50.75, 50.5 , 50.25, 50. , 49.75, 49.5 , 49.25, 49. , 48.75, 48.5 , 48.25, 48. , 47.75, 47.5 , 47.25, 47. , 46.75, 46.5 , 46.25, 46. , 45.75, 45.5 , 45.25, 45. , 44.75, 44.5 , 44.25, 44. , 43.75, 43.5 , 43.25, 43. , 42.75, 42.5 , 42.25, 42. , 41.75, 41.5 , 41.25, 41. , 40.75, 40.5 , 40.25, 40. , 39.75, 39.5 , 39.25, 39. , 38.75, 38.5 , 38.25, 38. , 37.75, 37.5 , 37.25, 37. , 36.75, 36.5 , 36.25, 36. ])
- year(year)int641950 1951 1952 ... 2018 2019 2020
array([1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020])
- longitude(longitude)float64-10.0 -9.75 -9.5 ... 34.75 35.0
array([-10. , -9.75, -9.5 , -9.25, -9. , -8.75, -8.5 , -8.25, -8. , -7.75, -7.5 , -7.25, -7. , -6.75, -6.5 , -6.25, -6. , -5.75, -5.5 , -5.25, -5. , -4.75, -4.5 , -4.25, -4. , -3.75, -3.5 , -3.25, -3. , -2.75, -2.5 , -2.25, -2. , -1.75, -1.5 , -1.25, -1. , -0.75, -0.5 , -0.25, 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25, 4.5 , 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 , 6.75, 7. , 7.25, 7.5 , 7.75, 8. , 8.25, 8.5 , 8.75, 9. , 9.25, 9.5 , 9.75, 10. , 10.25, 10.5 , 10.75, 11. , 11.25, 11.5 , 11.75, 12. , 12.25, 12.5 , 12.75, 13. , 13.25, 13.5 , 13.75, 14. , 14.25, 14.5 , 14.75, 15. , 15.25, 15.5 , 15.75, 16. , 16.25, 16.5 , 16.75, 17. , 17.25, 17.5 , 17.75, 18. , 18.25, 18.5 , 18.75, 19. , 19.25, 19.5 , 19.75, 20. , 20.25, 20.5 , 20.75, 21. , 21.25, 21.5 , 21.75, 22. , 22.25, 22.5 , 22.75, 23. , 23.25, 23.5 , 23.75, 24. , 24.25, 24.5 , 24.75, 25. , 25.25, 25.5 , 25.75, 26. , 26.25, 26.5 , 26.75, 27. , 27.25, 27.5 , 27.75, 28. , 28.25, 28.5 , 28.75, 29. , 29.25, 29.5 , 29.75, 30. , 30.25, 30.5 , 30.75, 31. , 31.25, 31.5 , 31.75, 32. , 32.25, 32.5 , 32.75, 33. , 33.25, 33.5 , 33.75, 34. , 34.25, 34.5 , 34.75, 35. ])
- age_band_lower_boundPandasIndex
PandasIndex(Index([0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65], dtype='int64', name='age_band_lower_bound'))
- latitudePandasIndex
PandasIndex(Index([ 71.0, 70.75, 70.5, 70.25, 70.0, 69.75, 69.5, 69.25, 69.0, 68.75, ... 38.25, 38.0, 37.75, 37.5, 37.25, 37.0, 36.75, 36.5, 36.25, 36.0], dtype='float64', name='latitude', length=141))
- yearPandasIndex
PandasIndex(Index([1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020], dtype='int64', name='year'))
- longitudePandasIndex
PandasIndex(Index([-10.0, -9.75, -9.5, -9.25, -9.0, -8.75, -8.5, -8.25, -8.0, -7.75, ... 32.75, 33.0, 33.25, 33.5, 33.75, 34.0, 34.25, 34.5, 34.75, 35.0], dtype='float64', name='longitude', length=181))
This is a relatively small dataset, we don't need to worry too much about the download size.
3. Data reduction¶
Next, we calculate the total population for each and every year. Notice that the data spans fron 1950 to 2020.
europe_population_bands_total = europe_population.sum("age_band_lower_bound")
europe_population_bands_total
<xarray.DataArray 'demographic_totals' (latitude: 141, longitude: 181, year: 71)> Size: 7MB dask.array<sum-aggregate, shape=(141, 181, 71), dtype=float32, chunksize=(64, 64, 71), chunktype=numpy.ndarray> Coordinates: * latitude (latitude) float64 1kB 71.0 70.75 70.5 70.25 ... 36.5 36.25 36.0 * year (year) int64 568B 1950 1951 1952 1953 ... 2017 2018 2019 2020 * longitude (longitude) float64 1kB -10.0 -9.75 -9.5 ... 34.5 34.75 35.0
- latitude: 141
- longitude: 181
- year: 71
- dask.array<chunksize=(52, 24, 71), meta=np.ndarray>
Array Chunk Bytes 6.91 MiB 1.11 MiB Shape (141, 181, 71) (64, 64, 71) Dask graph 12 chunks in 12 graph layers Data type float32 numpy.ndarray - latitude(latitude)float6471.0 70.75 70.5 ... 36.5 36.25 36.0
array([71. , 70.75, 70.5 , 70.25, 70. , 69.75, 69.5 , 69.25, 69. , 68.75, 68.5 , 68.25, 68. , 67.75, 67.5 , 67.25, 67. , 66.75, 66.5 , 66.25, 66. , 65.75, 65.5 , 65.25, 65. , 64.75, 64.5 , 64.25, 64. , 63.75, 63.5 , 63.25, 63. , 62.75, 62.5 , 62.25, 62. , 61.75, 61.5 , 61.25, 61. , 60.75, 60.5 , 60.25, 60. , 59.75, 59.5 , 59.25, 59. , 58.75, 58.5 , 58.25, 58. , 57.75, 57.5 , 57.25, 57. , 56.75, 56.5 , 56.25, 56. , 55.75, 55.5 , 55.25, 55. , 54.75, 54.5 , 54.25, 54. , 53.75, 53.5 , 53.25, 53. , 52.75, 52.5 , 52.25, 52. , 51.75, 51.5 , 51.25, 51. , 50.75, 50.5 , 50.25, 50. , 49.75, 49.5 , 49.25, 49. , 48.75, 48.5 , 48.25, 48. , 47.75, 47.5 , 47.25, 47. , 46.75, 46.5 , 46.25, 46. , 45.75, 45.5 , 45.25, 45. , 44.75, 44.5 , 44.25, 44. , 43.75, 43.5 , 43.25, 43. , 42.75, 42.5 , 42.25, 42. , 41.75, 41.5 , 41.25, 41. , 40.75, 40.5 , 40.25, 40. , 39.75, 39.5 , 39.25, 39. , 38.75, 38.5 , 38.25, 38. , 37.75, 37.5 , 37.25, 37. , 36.75, 36.5 , 36.25, 36. ])
- year(year)int641950 1951 1952 ... 2018 2019 2020
array([1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020])
- longitude(longitude)float64-10.0 -9.75 -9.5 ... 34.75 35.0
array([-10. , -9.75, -9.5 , -9.25, -9. , -8.75, -8.5 , -8.25, -8. , -7.75, -7.5 , -7.25, -7. , -6.75, -6.5 , -6.25, -6. , -5.75, -5.5 , -5.25, -5. , -4.75, -4.5 , -4.25, -4. , -3.75, -3.5 , -3.25, -3. , -2.75, -2.5 , -2.25, -2. , -1.75, -1.5 , -1.25, -1. , -0.75, -0.5 , -0.25, 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25, 4.5 , 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 , 6.75, 7. , 7.25, 7.5 , 7.75, 8. , 8.25, 8.5 , 8.75, 9. , 9.25, 9.5 , 9.75, 10. , 10.25, 10.5 , 10.75, 11. , 11.25, 11.5 , 11.75, 12. , 12.25, 12.5 , 12.75, 13. , 13.25, 13.5 , 13.75, 14. , 14.25, 14.5 , 14.75, 15. , 15.25, 15.5 , 15.75, 16. , 16.25, 16.5 , 16.75, 17. , 17.25, 17.5 , 17.75, 18. , 18.25, 18.5 , 18.75, 19. , 19.25, 19.5 , 19.75, 20. , 20.25, 20.5 , 20.75, 21. , 21.25, 21.5 , 21.75, 22. , 22.25, 22.5 , 22.75, 23. , 23.25, 23.5 , 23.75, 24. , 24.25, 24.5 , 24.75, 25. , 25.25, 25.5 , 25.75, 26. , 26.25, 26.5 , 26.75, 27. , 27.25, 27.5 , 27.75, 28. , 28.25, 28.5 , 28.75, 29. , 29.25, 29.5 , 29.75, 30. , 30.25, 30.5 , 30.75, 31. , 31.25, 31.5 , 31.75, 32. , 32.25, 32.5 , 32.75, 33. , 33.25, 33.5 , 33.75, 34. , 34.25, 34.5 , 34.75, 35. ])
- latitudePandasIndex
PandasIndex(Index([ 71.0, 70.75, 70.5, 70.25, 70.0, 69.75, 69.5, 69.25, 69.0, 68.75, ... 38.25, 38.0, 37.75, 37.5, 37.25, 37.0, 36.75, 36.5, 36.25, 36.0], dtype='float64', name='latitude', length=141))
- yearPandasIndex
PandasIndex(Index([1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020], dtype='int64', name='year'))
- longitudePandasIndex
PandasIndex(Index([-10.0, -9.75, -9.5, -9.25, -9.0, -8.75, -8.5, -8.25, -8.0, -7.75, ... 32.75, 33.0, 33.25, 33.5, 33.75, 34.0, 34.25, 34.5, 34.75, 35.0], dtype='float64', name='longitude', length=181))
4. Data download¶
This is the phase where we explicitly trigger the download of the data. To do so we will call compute()
on the European total population. The result will be small enought to easily fit into memory. Remember to assign the return of the compute()
function to a new variable, so that the data is kept in memory.
We can measure the time it takes:
%%time
europe_population_bands_total_computed = europe_population_bands_total.compute()
CPU times: user 874 ms, sys: 255 ms, total: 1.13 s Wall time: 865 ms
Preparing ERA5-single levels data¶
We will now follow the same logic to load ERA5 single levels data.
era5_single_levels = xr.open_dataset(
f"https://edh:{PAT}@data.earthdatahub.destine.eu/era5/reanalysis-era5-single-levels-v0.zarr",
chunks={},
engine="zarr",
storage_options={"client_kwargs": {"trust_env": True}},
)
era5_single_levels
<xarray.Dataset> Size: 256TB Dimensions: (valid_time: 742824, latitude: 721, longitude: 1440) Coordinates: entireAtmosphere float32 4B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 number int64 8B ... surface float64 8B ... * valid_time (valid_time) datetime64[ns] 6MB 1940-01-01 ... 2024-09-... Data variables: (12/83) alnid (valid_time, latitude, longitude) float32 3TB dask.array<chunksize=(4320, 64, 64), meta=np.ndarray> alnip (valid_time, latitude, longitude) float32 3TB dask.array<chunksize=(4320, 64, 64), meta=np.ndarray> aluvd (valid_time, latitude, longitude) float32 3TB dask.array<chunksize=(4320, 64, 64), meta=np.ndarray> aluvp (valid_time, latitude, longitude) float32 3TB dask.array<chunksize=(4320, 64, 64), meta=np.ndarray> blh (valid_time, latitude, longitude) float32 3TB dask.array<chunksize=(4320, 64, 64), meta=np.ndarray> cdir (valid_time, latitude, longitude) float32 3TB dask.array<chunksize=(4320, 64, 64), meta=np.ndarray> ... ... viiwe (valid_time, latitude, longitude) float32 3TB dask.array<chunksize=(4320, 64, 64), meta=np.ndarray> viiwn (valid_time, latitude, longitude) float32 3TB dask.array<chunksize=(4320, 64, 64), meta=np.ndarray> vilwd (valid_time, latitude, longitude) float32 3TB dask.array<chunksize=(4320, 64, 64), meta=np.ndarray> vilwe (valid_time, latitude, longitude) float32 3TB dask.array<chunksize=(4320, 64, 64), meta=np.ndarray> vilwn (valid_time, latitude, longitude) float32 3TB dask.array<chunksize=(4320, 64, 64), meta=np.ndarray> z (valid_time, latitude, longitude) float32 3TB dask.array<chunksize=(4320, 64, 64), meta=np.ndarray> Attributes: Conventions: CF-1.7 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_edition: 1 GRIB_subCentre: 0 history: 2024-10-02T12:52 GRIB to CDM+CF via cfgrib-0.9.1... institution: European Centre for Medium-Range Weather Forecasts
- valid_time: 742824
- latitude: 721
- longitude: 1440
- entireAtmosphere()float32...
- long_name :
- original GRIB coordinate for key: level(entireAtmosphere)
- units :
- 1
[1 values with dtype=float32]
- latitude(latitude)float6490.0 89.75 89.5 ... -89.75 -90.0
- long_name :
- latitude
- standard_name :
- latitude
- stored_direction :
- decreasing
- units :
- degrees_north
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
- longitude(longitude)float640.0 0.25 0.5 ... 359.2 359.5 359.8
- long_name :
- longitude
- standard_name :
- longitude
- units :
- degrees_east
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
- number()int64...
- long_name :
- ensemble member numerical id
- standard_name :
- realization
- units :
- 1
[1 values with dtype=int64]
- surface()float64...
- long_name :
- original GRIB coordinate for key: level(surface)
- units :
- 1
[1 values with dtype=float64]
- valid_time(valid_time)datetime64[ns]1940-01-01 ... 2024-09-26T23:00:00
array(['1940-01-01T00:00:00.000000000', '1940-01-01T01:00:00.000000000', '1940-01-01T02:00:00.000000000', ..., '2024-09-26T21:00:00.000000000', '2024-09-26T22:00:00.000000000', '2024-09-26T23:00:00.000000000'], dtype='datetime64[ns]')
- alnid(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- alnid
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Near IR albedo for diffuse radiation (climatological)
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 18
- GRIB_shortName :
- alnid
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- (0 - 1)
- last_restart_dim_updated :
- 742824
- long_name :
- Near IR albedo for diffuse radiation (climatological)
- standard_name :
- unknown
- units :
- (0 - 1)
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - alnip(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- alnip
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Near IR albedo for direct radiation (climatological)
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 17
- GRIB_shortName :
- alnip
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- (0 - 1)
- last_restart_dim_updated :
- 742824
- long_name :
- Near IR albedo for direct radiation (climatological)
- standard_name :
- unknown
- units :
- (0 - 1)
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - aluvd(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- aluvd
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- UV visible albedo for diffuse radiation (climatological)
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 16
- GRIB_shortName :
- aluvd
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- (0 - 1)
- last_restart_dim_updated :
- 742824
- long_name :
- UV visible albedo for diffuse radiation (climatological)
- standard_name :
- unknown
- units :
- (0 - 1)
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - aluvp(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- aluvp
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- UV visible albedo for direct radiation (climatological)
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 15
- GRIB_shortName :
- aluvp
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- (0 - 1)
- last_restart_dim_updated :
- 742824
- long_name :
- UV visible albedo for direct radiation (climatological)
- standard_name :
- unknown
- units :
- (0 - 1)
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - blh(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- blh
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Boundary layer height
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 159
- GRIB_shortName :
- blh
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m
- last_restart_dim_updated :
- 742824
- long_name :
- Boundary layer height
- standard_name :
- unknown
- units :
- m
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - cdir(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- cdir
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Surface direct short-wave radiation, clear sky
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228022
- GRIB_shortName :
- cdir
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Surface direct short-wave radiation, clear sky
- standard_name :
- unknown
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - cl(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- cl
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Lake cover
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 26
- GRIB_shortName :
- cl
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- (0 - 1)
- last_restart_dim_updated :
- 742824
- long_name :
- Lake cover
- standard_name :
- unknown
- units :
- (0 - 1)
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - cp(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- lwe_thickness_of_convective_precipitation_amount
- GRIB_cfVarName :
- cp
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Convective precipitation
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 143
- GRIB_shortName :
- cp
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m
- GRIB_uvRelativeToGrid :
- 0
- last_restart_dim_updated :
- 742824
- long_name :
- Convective precipitation
- standard_name :
- lwe_thickness_of_convective_precipitation_amount
- units :
- m
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - crr(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- crr
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Convective rain rate
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228218
- GRIB_shortName :
- crr
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- kg m**-2 s**-1
- GRIB_uvRelativeToGrid :
- 0
- last_restart_dim_updated :
- 742824
- long_name :
- Convective rain rate
- standard_name :
- unknown
- units :
- kg m**-2 s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - d2m(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- d2m
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- 2 metre dewpoint temperature
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 168
- GRIB_shortName :
- 2d
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- 2 metre dewpoint temperature
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - dl(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- dl
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Lake total depth
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228007
- GRIB_shortName :
- dl
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m
- last_restart_dim_updated :
- 742824
- long_name :
- Lake total depth
- standard_name :
- unknown
- units :
- m
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - e(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- lwe_thickness_of_water_evaporation_amount
- GRIB_cfVarName :
- e
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Evaporation
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 182
- GRIB_shortName :
- e
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m of water equivalent
- last_restart_dim_updated :
- 742824
- long_name :
- Evaporation
- standard_name :
- lwe_thickness_of_water_evaporation_amount
- units :
- m of water equivalent
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - fdir(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- fdir
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Total sky direct short-wave (solar) radiation at surface
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228021
- GRIB_shortName :
- fdir
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Total sky direct short-wave (solar) radiation at surface
- standard_name :
- unknown
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - flsr(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- flsr
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Forecast logarithm of surface roughness for heat
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 245
- GRIB_shortName :
- flsr
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- Numeric
- last_restart_dim_updated :
- 742824
- long_name :
- Forecast logarithm of surface roughness for heat
- standard_name :
- unknown
- units :
- Numeric
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - hcc(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- hcc
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- High cloud cover
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 188
- GRIB_shortName :
- hcc
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- (0 - 1)
- last_restart_dim_updated :
- 742824
- long_name :
- High cloud cover
- standard_name :
- unknown
- units :
- (0 - 1)
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - ie(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- ie
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Instantaneous moisture flux
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 232
- GRIB_shortName :
- ie
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- kg m**-2 s**-1
- last_restart_dim_updated :
- 742824
- long_name :
- Instantaneous moisture flux
- standard_name :
- unknown
- units :
- kg m**-2 s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - ilspf(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- ilspf
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Instantaneous large-scale surface precipitation fraction
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228217
- GRIB_shortName :
- ilspf
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- (0 - 1)
- GRIB_uvRelativeToGrid :
- 0
- last_restart_dim_updated :
- 742824
- long_name :
- Instantaneous large-scale surface precipitation fraction
- standard_name :
- unknown
- units :
- (0 - 1)
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - inss(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- inss
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Instantaneous northward turbulent surface stress
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 230
- GRIB_shortName :
- inss
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- N m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Instantaneous northward turbulent surface stress
- standard_name :
- unknown
- units :
- N m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - ishf(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- ishf
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Instantaneous surface sensible heat flux
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 231
- GRIB_shortName :
- ishf
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- W m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Instantaneous surface sensible heat flux
- standard_name :
- unknown
- units :
- W m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - istl1(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- istl1
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Ice temperature layer 1
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 35
- GRIB_shortName :
- istl1
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- depthBelowLandLayer
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- Ice temperature layer 1
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - istl2(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- istl2
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Ice temperature layer 2
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 36
- GRIB_shortName :
- istl2
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- depthBelowLandLayer
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- Ice temperature layer 2
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - istl3(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- istl3
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Ice temperature layer 3
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 37
- GRIB_shortName :
- istl3
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- depthBelowLandLayer
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- Ice temperature layer 3
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - istl4(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- istl4
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Ice temperature layer 4
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 38
- GRIB_shortName :
- istl4
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- depthBelowLandLayer
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- Ice temperature layer 4
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - lblt(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- lblt
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Lake bottom temperature
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228010
- GRIB_shortName :
- lblt
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- Lake bottom temperature
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - lcc(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- lcc
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Low cloud cover
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 186
- GRIB_shortName :
- lcc
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- (0 - 1)
- last_restart_dim_updated :
- 742824
- long_name :
- Low cloud cover
- standard_name :
- unknown
- units :
- (0 - 1)
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - licd(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- licd
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Lake ice total depth
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228014
- GRIB_shortName :
- licd
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m
- last_restart_dim_updated :
- 742824
- long_name :
- Lake ice total depth
- standard_name :
- unknown
- units :
- m
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - lict(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- lict
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Lake ice surface temperature
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228013
- GRIB_shortName :
- lict
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- Lake ice surface temperature
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - lmld(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- lmld
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Lake mix-layer depth
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228009
- GRIB_shortName :
- lmld
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m
- last_restart_dim_updated :
- 742824
- long_name :
- Lake mix-layer depth
- standard_name :
- unknown
- units :
- m
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - lmlt(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- lmlt
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Lake mix-layer temperature
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228008
- GRIB_shortName :
- lmlt
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- Lake mix-layer temperature
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - lshf(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- lshf
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Lake shape factor
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228012
- GRIB_shortName :
- lshf
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- dimensionless
- last_restart_dim_updated :
- 742824
- long_name :
- Lake shape factor
- standard_name :
- unknown
- units :
- dimensionless
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - lsp(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- lwe_thickness_of_stratiform_precipitation_amount
- GRIB_cfVarName :
- lsp
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Large-scale precipitation
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 142
- GRIB_shortName :
- lsp
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m
- GRIB_uvRelativeToGrid :
- 0
- last_restart_dim_updated :
- 742824
- long_name :
- Large-scale precipitation
- standard_name :
- lwe_thickness_of_stratiform_precipitation_amount
- units :
- m
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - lspf(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- lspf
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Large-scale precipitation fraction
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 50
- GRIB_shortName :
- lspf
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- s
- GRIB_uvRelativeToGrid :
- 0
- last_restart_dim_updated :
- 742824
- long_name :
- Large-scale precipitation fraction
- standard_name :
- unknown
- units :
- s
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - lsrr(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- lsrr
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Large scale rain rate
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228219
- GRIB_shortName :
- lsrr
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- kg m**-2 s**-1
- GRIB_uvRelativeToGrid :
- 0
- last_restart_dim_updated :
- 742824
- long_name :
- Large scale rain rate
- standard_name :
- unknown
- units :
- kg m**-2 s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - ltlt(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- ltlt
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Lake total layer temperature
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228011
- GRIB_shortName :
- ltlt
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- Lake total layer temperature
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - mcc(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- mcc
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Medium cloud cover
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 187
- GRIB_shortName :
- mcc
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- (0 - 1)
- last_restart_dim_updated :
- 742824
- long_name :
- Medium cloud cover
- standard_name :
- unknown
- units :
- (0 - 1)
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - mn2t(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- mn2t
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Minimum temperature at 2 metres since previous post-processing
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 202
- GRIB_shortName :
- mn2t
- GRIB_stepType :
- max
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- Minimum temperature at 2 metres since previous post-processing
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - mntpr(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- mntpr
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Minimum total precipitation rate since previous post-processing
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228227
- GRIB_shortName :
- mntpr
- GRIB_stepType :
- max
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- kg m**-2 s**-1
- GRIB_uvRelativeToGrid :
- 0
- last_restart_dim_updated :
- 742824
- long_name :
- Minimum total precipitation rate since previous post-processing
- standard_name :
- unknown
- units :
- kg m**-2 s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - msl(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- air_pressure_at_mean_sea_level
- GRIB_cfVarName :
- msl
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Mean sea level pressure
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 151
- GRIB_shortName :
- msl
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- Pa
- last_restart_dim_updated :
- 742824
- long_name :
- Mean sea level pressure
- standard_name :
- air_pressure_at_mean_sea_level
- units :
- Pa
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - mx2t(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- mx2t
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Maximum temperature at 2 metres since previous post-processing
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 201
- GRIB_shortName :
- mx2t
- GRIB_stepType :
- max
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- Maximum temperature at 2 metres since previous post-processing
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - mxtpr(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- mxtpr
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Maximum total precipitation rate since previous post-processing
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228226
- GRIB_shortName :
- mxtpr
- GRIB_stepType :
- max
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- kg m**-2 s**-1
- GRIB_uvRelativeToGrid :
- 0
- last_restart_dim_updated :
- 742824
- long_name :
- Maximum total precipitation rate since previous post-processing
- standard_name :
- unknown
- units :
- kg m**-2 s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - pev(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- pev
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Potential evaporation
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228251
- GRIB_shortName :
- pev
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m
- last_restart_dim_updated :
- 742824
- long_name :
- Potential evaporation
- standard_name :
- unknown
- units :
- m
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - ptype(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- ptype
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/longitude
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Precipitation type
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 260015
- GRIB_shortName :
- ptype
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- (Code table 4.201)
- GRIB_uvRelativeToGrid :
- 0
- last_restart_dim_updated :
- 742824
- long_name :
- Precipitation type
- standard_name :
- unknown
- units :
- (Code table 4.201)
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - ro(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- ro
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Runoff
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 205
- GRIB_shortName :
- ro
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m
- last_restart_dim_updated :
- 742824
- long_name :
- Runoff
- standard_name :
- unknown
- units :
- m
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - skt(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- skt
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Skin temperature
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 235
- GRIB_shortName :
- skt
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- Skin temperature
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - slhf(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- surface_upward_latent_heat_flux
- GRIB_cfVarName :
- slhf
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Surface latent heat flux
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 147
- GRIB_shortName :
- slhf
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Surface latent heat flux
- standard_name :
- surface_upward_latent_heat_flux
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - sp(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- surface_air_pressure
- GRIB_cfVarName :
- sp
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Surface pressure
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 134
- GRIB_shortName :
- sp
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- Pa
- last_restart_dim_updated :
- 742824
- long_name :
- Surface pressure
- standard_name :
- surface_air_pressure
- units :
- Pa
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - sro(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- sro
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Surface runoff
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 8
- GRIB_shortName :
- sro
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m
- last_restart_dim_updated :
- 742824
- long_name :
- Surface runoff
- standard_name :
- unknown
- units :
- m
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - sshf(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- surface_upward_sensible_heat_flux
- GRIB_cfVarName :
- sshf
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Surface sensible heat flux
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 146
- GRIB_shortName :
- sshf
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Surface sensible heat flux
- standard_name :
- surface_upward_sensible_heat_flux
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - ssr(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- surface_net_downward_shortwave_flux
- GRIB_cfVarName :
- ssr
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Surface net short-wave (solar) radiation
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 176
- GRIB_shortName :
- ssr
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Surface net short-wave (solar) radiation
- standard_name :
- surface_net_downward_shortwave_flux
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - ssrc(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- surface_net_downward_shortwave_flux_assuming_clear_sky
- GRIB_cfVarName :
- ssrc
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Surface net short-wave (solar) radiation, clear sky
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 210
- GRIB_shortName :
- ssrc
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Surface net short-wave (solar) radiation, clear sky
- standard_name :
- surface_net_downward_shortwave_flux_assuming_clear_sky
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - ssrd(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- surface_downwelling_shortwave_flux_in_air
- GRIB_cfVarName :
- ssrd
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Surface short-wave (solar) radiation downwards
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 169
- GRIB_shortName :
- ssrd
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Surface short-wave (solar) radiation downwards
- standard_name :
- surface_downwelling_shortwave_flux_in_air
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - ssrdc(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- ssrdc
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Surface short-wave (solar) radiation downward clear-sky
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228129
- GRIB_shortName :
- ssrdc
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Surface short-wave (solar) radiation downward clear-sky
- standard_name :
- unknown
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - ssro(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- ssro
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Sub-surface runoff
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 9
- GRIB_shortName :
- ssro
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m
- last_restart_dim_updated :
- 742824
- long_name :
- Sub-surface runoff
- standard_name :
- unknown
- units :
- m
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - sst(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- sst
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Sea surface temperature
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 34
- GRIB_shortName :
- sst
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- Sea surface temperature
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - str(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- surface_net_upward_longwave_flux
- GRIB_cfVarName :
- str
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Surface net long-wave (thermal) radiation
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 177
- GRIB_shortName :
- str
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Surface net long-wave (thermal) radiation
- standard_name :
- surface_net_upward_longwave_flux
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - strc(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- surface_net_downward_longwave_flux_assuming_clear_sky
- GRIB_cfVarName :
- strc
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Surface net long-wave (thermal) radiation, clear sky
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 211
- GRIB_shortName :
- strc
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Surface net long-wave (thermal) radiation, clear sky
- standard_name :
- surface_net_downward_longwave_flux_assuming_clear_sky
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - strd(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- strd
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Surface long-wave (thermal) radiation downwards
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 175
- GRIB_shortName :
- strd
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Surface long-wave (thermal) radiation downwards
- standard_name :
- unknown
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - strdc(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- strdc
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Surface long-wave (thermal) radiation downward clear-sky
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228130
- GRIB_shortName :
- strdc
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Surface long-wave (thermal) radiation downward clear-sky
- standard_name :
- unknown
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - t2m(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- t2m
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- 2 metre temperature
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 167
- GRIB_shortName :
- 2t
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- 2 metre temperature
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - tcc(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- cloud_area_fraction
- GRIB_cfVarName :
- tcc
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Total cloud cover
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 164
- GRIB_shortName :
- tcc
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- (0 - 1)
- last_restart_dim_updated :
- 742824
- long_name :
- Total cloud cover
- standard_name :
- cloud_area_fraction
- units :
- (0 - 1)
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - tciw(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- tciw
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Total column cloud ice water
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 79
- GRIB_shortName :
- tciw
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- kg m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Total column cloud ice water
- standard_name :
- unknown
- units :
- kg m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - tclw(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- tclw
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Total column cloud liquid water
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 78
- GRIB_shortName :
- tclw
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- kg m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Total column cloud liquid water
- standard_name :
- unknown
- units :
- kg m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - tcrw(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- tcrw
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Total column rain water
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228089
- GRIB_shortName :
- tcrw
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- kg m**-2
- GRIB_uvRelativeToGrid :
- 0
- last_restart_dim_updated :
- 742824
- long_name :
- Total column rain water
- standard_name :
- unknown
- units :
- kg m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - tisr(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- tisr
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- TOA incident short-wave (solar) radiation
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 212
- GRIB_shortName :
- tisr
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- TOA incident short-wave (solar) radiation
- standard_name :
- unknown
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - tp(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- tp
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Total precipitation
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228
- GRIB_shortName :
- tp
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m
- last_restart_dim_updated :
- 742824
- long_name :
- Total precipitation
- standard_name :
- unknown
- units :
- m
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - tsr(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- toa_net_upward_shortwave_flux
- GRIB_cfVarName :
- tsr
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Top net short-wave (solar) radiation
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 178
- GRIB_shortName :
- tsr
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Top net short-wave (solar) radiation
- standard_name :
- toa_net_upward_shortwave_flux
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - tsrc(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- tsrc
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Top net short-wave (solar) radiation, clear sky
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 208
- GRIB_shortName :
- tsrc
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Top net short-wave (solar) radiation, clear sky
- standard_name :
- unknown
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - ttr(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- toa_outgoing_longwave_flux
- GRIB_cfVarName :
- ttr
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Top net long-wave (thermal) radiation
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 179
- GRIB_shortName :
- ttr
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Top net long-wave (thermal) radiation
- standard_name :
- toa_outgoing_longwave_flux
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - ttrc(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- ttrc
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Top net long-wave (thermal) radiation, clear sky
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 209
- GRIB_shortName :
- ttrc
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Top net long-wave (thermal) radiation, clear sky
- standard_name :
- unknown
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - u10(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- u10
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- 10 metre U wind component
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 165
- GRIB_shortName :
- 10u
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m s**-1
- last_restart_dim_updated :
- 742824
- long_name :
- 10 metre U wind component
- standard_name :
- unknown
- units :
- m s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - u100(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- u100
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- 100 metre U wind component
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228246
- GRIB_shortName :
- 100u
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m s**-1
- last_restart_dim_updated :
- 742824
- long_name :
- 100 metre U wind component
- standard_name :
- unknown
- units :
- m s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - u10n(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- u10n
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- 10 metre u-component of neutral wind
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228131
- GRIB_shortName :
- u10n
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m s**-1
- last_restart_dim_updated :
- 742824
- long_name :
- 10 metre u-component of neutral wind
- standard_name :
- unknown
- units :
- m s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - uvb(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- uvb
- GRIB_dataType :
- fc
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Downward UV radiation at the surface
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 57
- GRIB_shortName :
- uvb
- GRIB_stepType :
- accum
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- J m**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Downward UV radiation at the surface
- standard_name :
- unknown
- units :
- J m**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - v10(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- v10
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- 10 metre V wind component
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 166
- GRIB_shortName :
- 10v
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m s**-1
- last_restart_dim_updated :
- 742824
- long_name :
- 10 metre V wind component
- standard_name :
- unknown
- units :
- m s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - v100(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- v100
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- 100 metre V wind component
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228247
- GRIB_shortName :
- 100v
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m s**-1
- last_restart_dim_updated :
- 742824
- long_name :
- 100 metre V wind component
- standard_name :
- unknown
- units :
- m s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - v10n(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- v10n
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- 10 metre v-component of neutral wind
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 228132
- GRIB_shortName :
- v10n
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m s**-1
- last_restart_dim_updated :
- 742824
- long_name :
- 10 metre v-component of neutral wind
- standard_name :
- unknown
- units :
- m s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - viiwd(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- viiwd
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Vertical integral of divergence of cloud frozen water flux
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 162080
- GRIB_shortName :
- viiwd
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- entireAtmosphere
- GRIB_units :
- kg m**-2 s**-1
- last_restart_dim_updated :
- 742824
- long_name :
- Vertical integral of divergence of cloud frozen water flux
- standard_name :
- unknown
- units :
- kg m**-2 s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - viiwe(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- viiwe
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Vertical integral of eastward cloud frozen water flux
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 162090
- GRIB_shortName :
- viiwe
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- entireAtmosphere
- GRIB_units :
- kg m**-1 s**-1
- last_restart_dim_updated :
- 742824
- long_name :
- Vertical integral of eastward cloud frozen water flux
- standard_name :
- unknown
- units :
- kg m**-1 s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - viiwn(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- viiwn
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Vertical integral of northward cloud frozen water flux
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 162091
- GRIB_shortName :
- viiwn
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- entireAtmosphere
- GRIB_units :
- kg m**-1 s**-1
- last_restart_dim_updated :
- 742824
- long_name :
- Vertical integral of northward cloud frozen water flux
- standard_name :
- unknown
- units :
- kg m**-1 s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - vilwd(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- vilwd
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Vertical integral of divergence of cloud liquid water flux
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 162079
- GRIB_shortName :
- vilwd
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- entireAtmosphere
- GRIB_units :
- kg m**-2 s**-1
- last_restart_dim_updated :
- 742824
- long_name :
- Vertical integral of divergence of cloud liquid water flux
- standard_name :
- unknown
- units :
- kg m**-2 s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - vilwe(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- vilwe
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Vertical integral of eastward cloud liquid water flux
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 162088
- GRIB_shortName :
- vilwe
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- entireAtmosphere
- GRIB_units :
- kg m**-1 s**-1
- last_restart_dim_updated :
- 742824
- long_name :
- Vertical integral of eastward cloud liquid water flux
- standard_name :
- unknown
- units :
- kg m**-1 s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - vilwn(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- vilwn
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Vertical integral of northward cloud liquid water flux
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 162089
- GRIB_shortName :
- vilwn
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- entireAtmosphere
- GRIB_units :
- kg m**-1 s**-1
- last_restart_dim_updated :
- 742824
- long_name :
- Vertical integral of northward cloud liquid water flux
- standard_name :
- unknown
- units :
- kg m**-1 s**-1
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray - z(valid_time, latitude, longitude)float32dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- geopotential
- GRIB_cfVarName :
- z
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- Geopotential
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 129
- GRIB_shortName :
- z
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- m**2 s**-2
- last_restart_dim_updated :
- 742824
- long_name :
- Geopotential
- standard_name :
- geopotential
- units :
- m**2 s**-2
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 2 graph layers Data type float32 numpy.ndarray
- latitudePandasIndex
PandasIndex(Index([ 90.0, 89.75, 89.5, 89.25, 89.0, 88.75, 88.5, 88.25, 88.0, 87.75, ... -87.75, -88.0, -88.25, -88.5, -88.75, -89.0, -89.25, -89.5, -89.75, -90.0], dtype='float64', name='latitude', length=721))
- longitudePandasIndex
PandasIndex(Index([ 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, ... 357.5, 357.75, 358.0, 358.25, 358.5, 358.75, 359.0, 359.25, 359.5, 359.75], dtype='float64', name='longitude', length=1440))
- valid_timePandasIndex
PandasIndex(DatetimeIndex(['1940-01-01 00:00:00', '1940-01-01 01:00:00', '1940-01-01 02:00:00', '1940-01-01 03:00:00', '1940-01-01 04:00:00', '1940-01-01 05:00:00', '1940-01-01 06:00:00', '1940-01-01 07:00:00', '1940-01-01 08:00:00', '1940-01-01 09:00:00', ... '2024-09-26 14:00:00', '2024-09-26 15:00:00', '2024-09-26 16:00:00', '2024-09-26 17:00:00', '2024-09-26 18:00:00', '2024-09-26 19:00:00', '2024-09-26 20:00:00', '2024-09-26 21:00:00', '2024-09-26 22:00:00', '2024-09-26 23:00:00'], dtype='datetime64[ns]', name='valid_time', length=742824, freq=None))
- Conventions :
- CF-1.7
- GRIB_centre :
- ecmf
- GRIB_centreDescription :
- European Centre for Medium-Range Weather Forecasts
- GRIB_edition :
- 1
- GRIB_subCentre :
- 0
- history :
- 2024-10-02T12:52 GRIB to CDM+CF via cfgrib-0.9.14.1/ecCodes-2.38.0 with {"source": ".xarray-ecmwf-cache/60b4e879cc647fea654b5515e1f182e4.grib", "filter_by_keys": {}, "encode_cf": ["parameter", "time", "geography", "vertical"]}
- institution :
- European Centre for Medium-Range Weather Forecasts
From the dataset we extract the 2 metre temperature:
t2m = era5_single_levels.t2m - 273.15 # to celsius
t2m.attrs["units"] = "°C"
t2m
<xarray.DataArray 't2m' (valid_time: 742824, latitude: 721, longitude: 1440)> Size: 3TB dask.array<sub, shape=(742824, 721, 1440), dtype=float32, chunksize=(4320, 64, 64), chunktype=numpy.ndarray> Coordinates: entireAtmosphere float32 4B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 * longitude (longitude) float64 12kB 0.0 0.25 0.5 ... 359.5 359.8 number int64 8B ... surface float64 8B ... * valid_time (valid_time) datetime64[ns] 6MB 1940-01-01 ... 2024-09-... Attributes: (12/31) GRIB_NV: 0 GRIB_Nx: 1440 GRIB_Ny: 721 GRIB_cfName: unknown GRIB_cfVarName: t2m GRIB_dataType: an ... ... GRIB_typeOfLevel: surface GRIB_units: K last_restart_dim_updated: 742824 long_name: 2 metre temperature standard_name: unknown units: °C
- valid_time: 742824
- latitude: 721
- longitude: 1440
- dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 3 graph layers Data type float32 numpy.ndarray - entireAtmosphere()float32...
- long_name :
- original GRIB coordinate for key: level(entireAtmosphere)
- units :
- 1
[1 values with dtype=float32]
- latitude(latitude)float6490.0 89.75 89.5 ... -89.75 -90.0
- long_name :
- latitude
- standard_name :
- latitude
- stored_direction :
- decreasing
- units :
- degrees_north
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
- longitude(longitude)float640.0 0.25 0.5 ... 359.2 359.5 359.8
- long_name :
- longitude
- standard_name :
- longitude
- units :
- degrees_east
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02])
- number()int64...
- long_name :
- ensemble member numerical id
- standard_name :
- realization
- units :
- 1
[1 values with dtype=int64]
- surface()float64...
- long_name :
- original GRIB coordinate for key: level(surface)
- units :
- 1
[1 values with dtype=float64]
- valid_time(valid_time)datetime64[ns]1940-01-01 ... 2024-09-26T23:00:00
array(['1940-01-01T00:00:00.000000000', '1940-01-01T01:00:00.000000000', '1940-01-01T02:00:00.000000000', ..., '2024-09-26T21:00:00.000000000', '2024-09-26T22:00:00.000000000', '2024-09-26T23:00:00.000000000'], dtype='datetime64[ns]')
- latitudePandasIndex
PandasIndex(Index([ 90.0, 89.75, 89.5, 89.25, 89.0, 88.75, 88.5, 88.25, 88.0, 87.75, ... -87.75, -88.0, -88.25, -88.5, -88.75, -89.0, -89.25, -89.5, -89.75, -90.0], dtype='float64', name='latitude', length=721))
- longitudePandasIndex
PandasIndex(Index([ 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, ... 357.5, 357.75, 358.0, 358.25, 358.5, 358.75, 359.0, 359.25, 359.5, 359.75], dtype='float64', name='longitude', length=1440))
- valid_timePandasIndex
PandasIndex(DatetimeIndex(['1940-01-01 00:00:00', '1940-01-01 01:00:00', '1940-01-01 02:00:00', '1940-01-01 03:00:00', '1940-01-01 04:00:00', '1940-01-01 05:00:00', '1940-01-01 06:00:00', '1940-01-01 07:00:00', '1940-01-01 08:00:00', '1940-01-01 09:00:00', ... '2024-09-26 14:00:00', '2024-09-26 15:00:00', '2024-09-26 16:00:00', '2024-09-26 17:00:00', '2024-09-26 18:00:00', '2024-09-26 19:00:00', '2024-09-26 20:00:00', '2024-09-26 21:00:00', '2024-09-26 22:00:00', '2024-09-26 23:00:00'], dtype='datetime64[ns]', name='valid_time', length=742824, freq=None))
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- t2m
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- 2 metre temperature
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 167
- GRIB_shortName :
- 2t
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- 2 metre temperature
- standard_name :
- unknown
- units :
- °C
We perform the same coordinate rolling as we did before:
t2m = t2m.assign_coords(longitude=(((t2m.longitude + 180) % 360) - 180))
t2m = t2m.roll(longitude=int(len(t2m.longitude) / 2), roll_coords=True)
t2m
<xarray.DataArray 't2m' (valid_time: 742824, latitude: 721, longitude: 1440)> Size: 3TB dask.array<rechunk-merge, shape=(742824, 721, 1440), dtype=float32, chunksize=(4320, 64, 64), chunktype=numpy.ndarray> Coordinates: entireAtmosphere float32 4B ... * latitude (latitude) float64 6kB 90.0 89.75 89.5 ... -89.75 -90.0 number int64 8B ... surface float64 8B ... * valid_time (valid_time) datetime64[ns] 6MB 1940-01-01 ... 2024-09-... * longitude (longitude) float64 12kB -180.0 -179.8 ... 179.5 179.8 Attributes: (12/31) GRIB_NV: 0 GRIB_Nx: 1440 GRIB_Ny: 721 GRIB_cfName: unknown GRIB_cfVarName: t2m GRIB_dataType: an ... ... GRIB_typeOfLevel: surface GRIB_units: K last_restart_dim_updated: 742824 long_name: 2 metre temperature standard_name: unknown units: °C
- valid_time: 742824
- latitude: 721
- longitude: 1440
- dask.array<chunksize=(4320, 64, 64), meta=np.ndarray>
Array Chunk Bytes 2.81 TiB 67.50 MiB Shape (742824, 721, 1440) (4320, 64, 64) Dask graph 47472 chunks in 7 graph layers Data type float32 numpy.ndarray - entireAtmosphere()float32...
- long_name :
- original GRIB coordinate for key: level(entireAtmosphere)
- units :
- 1
[1 values with dtype=float32]
- latitude(latitude)float6490.0 89.75 89.5 ... -89.75 -90.0
- long_name :
- latitude
- standard_name :
- latitude
- stored_direction :
- decreasing
- units :
- degrees_north
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ])
- number()int64...
- long_name :
- ensemble member numerical id
- standard_name :
- realization
- units :
- 1
[1 values with dtype=int64]
- surface()float64...
- long_name :
- original GRIB coordinate for key: level(surface)
- units :
- 1
[1 values with dtype=float64]
- valid_time(valid_time)datetime64[ns]1940-01-01 ... 2024-09-26T23:00:00
array(['1940-01-01T00:00:00.000000000', '1940-01-01T01:00:00.000000000', '1940-01-01T02:00:00.000000000', ..., '2024-09-26T21:00:00.000000000', '2024-09-26T22:00:00.000000000', '2024-09-26T23:00:00.000000000'], dtype='datetime64[ns]')
- longitude(longitude)float64-180.0 -179.8 ... 179.5 179.8
- long_name :
- longitude
- standard_name :
- longitude
- units :
- degrees_east
array([-180. , -179.75, -179.5 , ..., 179.25, 179.5 , 179.75])
- latitudePandasIndex
PandasIndex(Index([ 90.0, 89.75, 89.5, 89.25, 89.0, 88.75, 88.5, 88.25, 88.0, 87.75, ... -87.75, -88.0, -88.25, -88.5, -88.75, -89.0, -89.25, -89.5, -89.75, -90.0], dtype='float64', name='latitude', length=721))
- valid_timePandasIndex
PandasIndex(DatetimeIndex(['1940-01-01 00:00:00', '1940-01-01 01:00:00', '1940-01-01 02:00:00', '1940-01-01 03:00:00', '1940-01-01 04:00:00', '1940-01-01 05:00:00', '1940-01-01 06:00:00', '1940-01-01 07:00:00', '1940-01-01 08:00:00', '1940-01-01 09:00:00', ... '2024-09-26 14:00:00', '2024-09-26 15:00:00', '2024-09-26 16:00:00', '2024-09-26 17:00:00', '2024-09-26 18:00:00', '2024-09-26 19:00:00', '2024-09-26 20:00:00', '2024-09-26 21:00:00', '2024-09-26 22:00:00', '2024-09-26 23:00:00'], dtype='datetime64[ns]', name='valid_time', length=742824, freq=None))
- longitudePandasIndex
PandasIndex(Index([ -180.0, -179.75, -179.5, -179.25, -179.0, -178.75, -178.5, -178.25, -178.0, -177.75, ... 177.5, 177.75, 178.0, 178.25, 178.5, 178.75, 179.0, 179.25, 179.5, 179.75], dtype='float64', name='longitude', length=1440))
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- t2m
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- 2 metre temperature
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 167
- GRIB_shortName :
- 2t
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- 2 metre temperature
- standard_name :
- unknown
- units :
- °C
Also, we perform a geographical selection corresponding to continental Europe and a temporal selection of the years between 1950 and 2020.
t2m_europe = t2m.sel(latitude=slice(71, 36), longitude=slice(-10,35))
t2m_europe_1950_2020 = t2m_europe.sel(valid_time=slice("1950", "2020"))
t2m_europe_1950_2020
<xarray.DataArray 't2m' (valid_time: 622392, latitude: 141, longitude: 181)> Size: 64GB dask.array<getitem, shape=(622392, 141, 181), dtype=float32, chunksize=(4320, 64, 64), chunktype=numpy.ndarray> Coordinates: entireAtmosphere float32 4B ... * latitude (latitude) float64 1kB 71.0 70.75 70.5 ... 36.5 36.25 36.0 number int64 8B ... surface float64 8B ... * valid_time (valid_time) datetime64[ns] 5MB 1950-01-01 ... 2020-12-... * longitude (longitude) float64 1kB -10.0 -9.75 -9.5 ... 34.75 35.0 Attributes: (12/31) GRIB_NV: 0 GRIB_Nx: 1440 GRIB_Ny: 721 GRIB_cfName: unknown GRIB_cfVarName: t2m GRIB_dataType: an ... ... GRIB_typeOfLevel: surface GRIB_units: K last_restart_dim_updated: 742824 long_name: 2 metre temperature standard_name: unknown units: °C
- valid_time: 622392
- latitude: 141
- longitude: 181
- dask.array<chunksize=(3048, 52, 24), meta=np.ndarray>
Array Chunk Bytes 59.17 GiB 67.50 MiB Shape (622392, 141, 181) (4320, 64, 64) Dask graph 1740 chunks in 9 graph layers Data type float32 numpy.ndarray - entireAtmosphere()float32...
- long_name :
- original GRIB coordinate for key: level(entireAtmosphere)
- units :
- 1
[1 values with dtype=float32]
- latitude(latitude)float6471.0 70.75 70.5 ... 36.5 36.25 36.0
- long_name :
- latitude
- standard_name :
- latitude
- stored_direction :
- decreasing
- units :
- degrees_north
array([71. , 70.75, 70.5 , 70.25, 70. , 69.75, 69.5 , 69.25, 69. , 68.75, 68.5 , 68.25, 68. , 67.75, 67.5 , 67.25, 67. , 66.75, 66.5 , 66.25, 66. , 65.75, 65.5 , 65.25, 65. , 64.75, 64.5 , 64.25, 64. , 63.75, 63.5 , 63.25, 63. , 62.75, 62.5 , 62.25, 62. , 61.75, 61.5 , 61.25, 61. , 60.75, 60.5 , 60.25, 60. , 59.75, 59.5 , 59.25, 59. , 58.75, 58.5 , 58.25, 58. , 57.75, 57.5 , 57.25, 57. , 56.75, 56.5 , 56.25, 56. , 55.75, 55.5 , 55.25, 55. , 54.75, 54.5 , 54.25, 54. , 53.75, 53.5 , 53.25, 53. , 52.75, 52.5 , 52.25, 52. , 51.75, 51.5 , 51.25, 51. , 50.75, 50.5 , 50.25, 50. , 49.75, 49.5 , 49.25, 49. , 48.75, 48.5 , 48.25, 48. , 47.75, 47.5 , 47.25, 47. , 46.75, 46.5 , 46.25, 46. , 45.75, 45.5 , 45.25, 45. , 44.75, 44.5 , 44.25, 44. , 43.75, 43.5 , 43.25, 43. , 42.75, 42.5 , 42.25, 42. , 41.75, 41.5 , 41.25, 41. , 40.75, 40.5 , 40.25, 40. , 39.75, 39.5 , 39.25, 39. , 38.75, 38.5 , 38.25, 38. , 37.75, 37.5 , 37.25, 37. , 36.75, 36.5 , 36.25, 36. ])
- number()int64...
- long_name :
- ensemble member numerical id
- standard_name :
- realization
- units :
- 1
[1 values with dtype=int64]
- surface()float64...
- long_name :
- original GRIB coordinate for key: level(surface)
- units :
- 1
[1 values with dtype=float64]
- valid_time(valid_time)datetime64[ns]1950-01-01 ... 2020-12-31T23:00:00
array(['1950-01-01T00:00:00.000000000', '1950-01-01T01:00:00.000000000', '1950-01-01T02:00:00.000000000', ..., '2020-12-31T21:00:00.000000000', '2020-12-31T22:00:00.000000000', '2020-12-31T23:00:00.000000000'], dtype='datetime64[ns]')
- longitude(longitude)float64-10.0 -9.75 -9.5 ... 34.75 35.0
- long_name :
- longitude
- standard_name :
- longitude
- units :
- degrees_east
array([-10. , -9.75, -9.5 , -9.25, -9. , -8.75, -8.5 , -8.25, -8. , -7.75, -7.5 , -7.25, -7. , -6.75, -6.5 , -6.25, -6. , -5.75, -5.5 , -5.25, -5. , -4.75, -4.5 , -4.25, -4. , -3.75, -3.5 , -3.25, -3. , -2.75, -2.5 , -2.25, -2. , -1.75, -1.5 , -1.25, -1. , -0.75, -0.5 , -0.25, 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25, 4.5 , 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 , 6.75, 7. , 7.25, 7.5 , 7.75, 8. , 8.25, 8.5 , 8.75, 9. , 9.25, 9.5 , 9.75, 10. , 10.25, 10.5 , 10.75, 11. , 11.25, 11.5 , 11.75, 12. , 12.25, 12.5 , 12.75, 13. , 13.25, 13.5 , 13.75, 14. , 14.25, 14.5 , 14.75, 15. , 15.25, 15.5 , 15.75, 16. , 16.25, 16.5 , 16.75, 17. , 17.25, 17.5 , 17.75, 18. , 18.25, 18.5 , 18.75, 19. , 19.25, 19.5 , 19.75, 20. , 20.25, 20.5 , 20.75, 21. , 21.25, 21.5 , 21.75, 22. , 22.25, 22.5 , 22.75, 23. , 23.25, 23.5 , 23.75, 24. , 24.25, 24.5 , 24.75, 25. , 25.25, 25.5 , 25.75, 26. , 26.25, 26.5 , 26.75, 27. , 27.25, 27.5 , 27.75, 28. , 28.25, 28.5 , 28.75, 29. , 29.25, 29.5 , 29.75, 30. , 30.25, 30.5 , 30.75, 31. , 31.25, 31.5 , 31.75, 32. , 32.25, 32.5 , 32.75, 33. , 33.25, 33.5 , 33.75, 34. , 34.25, 34.5 , 34.75, 35. ])
- latitudePandasIndex
PandasIndex(Index([ 71.0, 70.75, 70.5, 70.25, 70.0, 69.75, 69.5, 69.25, 69.0, 68.75, ... 38.25, 38.0, 37.75, 37.5, 37.25, 37.0, 36.75, 36.5, 36.25, 36.0], dtype='float64', name='latitude', length=141))
- valid_timePandasIndex
PandasIndex(DatetimeIndex(['1950-01-01 00:00:00', '1950-01-01 01:00:00', '1950-01-01 02:00:00', '1950-01-01 03:00:00', '1950-01-01 04:00:00', '1950-01-01 05:00:00', '1950-01-01 06:00:00', '1950-01-01 07:00:00', '1950-01-01 08:00:00', '1950-01-01 09:00:00', ... '2020-12-31 14:00:00', '2020-12-31 15:00:00', '2020-12-31 16:00:00', '2020-12-31 17:00:00', '2020-12-31 18:00:00', '2020-12-31 19:00:00', '2020-12-31 20:00:00', '2020-12-31 21:00:00', '2020-12-31 22:00:00', '2020-12-31 23:00:00'], dtype='datetime64[ns]', name='valid_time', length=622392, freq=None))
- longitudePandasIndex
PandasIndex(Index([-10.0, -9.75, -9.5, -9.25, -9.0, -8.75, -8.5, -8.25, -8.0, -7.75, ... 32.75, 33.0, 33.25, 33.5, 33.75, 34.0, 34.25, 34.5, 34.75, 35.0], dtype='float64', name='longitude', length=181))
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- t2m
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- 2 metre temperature
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 167
- GRIB_shortName :
- 2t
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- 2 metre temperature
- standard_name :
- unknown
- units :
- °C
The ERA5 single levels dataset is way bigger than the population one. When we access a sample of the 2 metre temperature, xarray must download every chunk that includes a portion of the selected data.
To estimate the size of the download, we can use the costing.py
module. This estimate must be done before we apply any reduction operation.
import costing
costing.estimate_download_size(t2m, t2m_europe_1950_2020)
estimated_needed_chunks: 1740 estimated_memory_size: 123.155 GB estimated_download_size: 12.316 GB
This amount of data could be easily downloaded from Earth Data Hub, thanks to data compression. However, the result of the compute()
wouldn't fit into memory. We thus perform a reduction operation before triggering the download and computation, which greatly reduces the size of the result that will be kept in memory.
We compute the annual average of the 2 metre temperature:
t2m_europe_yearly_mean = t2m_europe_1950_2020.resample(valid_time="YS").mean()
t2m_europe_yearly_mean
<xarray.DataArray 't2m' (valid_time: 71, latitude: 141, longitude: 181)> Size: 7MB dask.array<transpose, shape=(71, 141, 181), dtype=float32, chunksize=(1, 64, 64), chunktype=numpy.ndarray> Coordinates: entireAtmosphere float32 4B ... * latitude (latitude) float64 1kB 71.0 70.75 70.5 ... 36.5 36.25 36.0 number int64 8B ... surface float64 8B ... * longitude (longitude) float64 1kB -10.0 -9.75 -9.5 ... 34.75 35.0 * valid_time (valid_time) datetime64[ns] 568B 1950-01-01 ... 2020-01-01 Attributes: (12/31) GRIB_NV: 0 GRIB_Nx: 1440 GRIB_Ny: 721 GRIB_cfName: unknown GRIB_cfVarName: t2m GRIB_dataType: an ... ... GRIB_typeOfLevel: surface GRIB_units: K last_restart_dim_updated: 742824 long_name: 2 metre temperature standard_name: unknown units: °C
- valid_time: 71
- latitude: 141
- longitude: 181
- dask.array<chunksize=(1, 52, 24), meta=np.ndarray>
Array Chunk Bytes 6.91 MiB 16.00 kiB Shape (71, 141, 181) (1, 64, 64) Dask graph 852 chunks in 157 graph layers Data type float32 numpy.ndarray - entireAtmosphere()float32...
- long_name :
- original GRIB coordinate for key: level(entireAtmosphere)
- units :
- 1
[1 values with dtype=float32]
- latitude(latitude)float6471.0 70.75 70.5 ... 36.5 36.25 36.0
- long_name :
- latitude
- standard_name :
- latitude
- stored_direction :
- decreasing
- units :
- degrees_north
array([71. , 70.75, 70.5 , 70.25, 70. , 69.75, 69.5 , 69.25, 69. , 68.75, 68.5 , 68.25, 68. , 67.75, 67.5 , 67.25, 67. , 66.75, 66.5 , 66.25, 66. , 65.75, 65.5 , 65.25, 65. , 64.75, 64.5 , 64.25, 64. , 63.75, 63.5 , 63.25, 63. , 62.75, 62.5 , 62.25, 62. , 61.75, 61.5 , 61.25, 61. , 60.75, 60.5 , 60.25, 60. , 59.75, 59.5 , 59.25, 59. , 58.75, 58.5 , 58.25, 58. , 57.75, 57.5 , 57.25, 57. , 56.75, 56.5 , 56.25, 56. , 55.75, 55.5 , 55.25, 55. , 54.75, 54.5 , 54.25, 54. , 53.75, 53.5 , 53.25, 53. , 52.75, 52.5 , 52.25, 52. , 51.75, 51.5 , 51.25, 51. , 50.75, 50.5 , 50.25, 50. , 49.75, 49.5 , 49.25, 49. , 48.75, 48.5 , 48.25, 48. , 47.75, 47.5 , 47.25, 47. , 46.75, 46.5 , 46.25, 46. , 45.75, 45.5 , 45.25, 45. , 44.75, 44.5 , 44.25, 44. , 43.75, 43.5 , 43.25, 43. , 42.75, 42.5 , 42.25, 42. , 41.75, 41.5 , 41.25, 41. , 40.75, 40.5 , 40.25, 40. , 39.75, 39.5 , 39.25, 39. , 38.75, 38.5 , 38.25, 38. , 37.75, 37.5 , 37.25, 37. , 36.75, 36.5 , 36.25, 36. ])
- number()int64...
- long_name :
- ensemble member numerical id
- standard_name :
- realization
- units :
- 1
[1 values with dtype=int64]
- surface()float64...
- long_name :
- original GRIB coordinate for key: level(surface)
- units :
- 1
[1 values with dtype=float64]
- longitude(longitude)float64-10.0 -9.75 -9.5 ... 34.75 35.0
- long_name :
- longitude
- standard_name :
- longitude
- units :
- degrees_east
array([-10. , -9.75, -9.5 , -9.25, -9. , -8.75, -8.5 , -8.25, -8. , -7.75, -7.5 , -7.25, -7. , -6.75, -6.5 , -6.25, -6. , -5.75, -5.5 , -5.25, -5. , -4.75, -4.5 , -4.25, -4. , -3.75, -3.5 , -3.25, -3. , -2.75, -2.5 , -2.25, -2. , -1.75, -1.5 , -1.25, -1. , -0.75, -0.5 , -0.25, 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25, 4.5 , 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 , 6.75, 7. , 7.25, 7.5 , 7.75, 8. , 8.25, 8.5 , 8.75, 9. , 9.25, 9.5 , 9.75, 10. , 10.25, 10.5 , 10.75, 11. , 11.25, 11.5 , 11.75, 12. , 12.25, 12.5 , 12.75, 13. , 13.25, 13.5 , 13.75, 14. , 14.25, 14.5 , 14.75, 15. , 15.25, 15.5 , 15.75, 16. , 16.25, 16.5 , 16.75, 17. , 17.25, 17.5 , 17.75, 18. , 18.25, 18.5 , 18.75, 19. , 19.25, 19.5 , 19.75, 20. , 20.25, 20.5 , 20.75, 21. , 21.25, 21.5 , 21.75, 22. , 22.25, 22.5 , 22.75, 23. , 23.25, 23.5 , 23.75, 24. , 24.25, 24.5 , 24.75, 25. , 25.25, 25.5 , 25.75, 26. , 26.25, 26.5 , 26.75, 27. , 27.25, 27.5 , 27.75, 28. , 28.25, 28.5 , 28.75, 29. , 29.25, 29.5 , 29.75, 30. , 30.25, 30.5 , 30.75, 31. , 31.25, 31.5 , 31.75, 32. , 32.25, 32.5 , 32.75, 33. , 33.25, 33.5 , 33.75, 34. , 34.25, 34.5 , 34.75, 35. ])
- valid_time(valid_time)datetime64[ns]1950-01-01 ... 2020-01-01
array(['1950-01-01T00:00:00.000000000', '1951-01-01T00:00:00.000000000', '1952-01-01T00:00:00.000000000', '1953-01-01T00:00:00.000000000', '1954-01-01T00:00:00.000000000', '1955-01-01T00:00:00.000000000', '1956-01-01T00:00:00.000000000', '1957-01-01T00:00:00.000000000', '1958-01-01T00:00:00.000000000', '1959-01-01T00:00:00.000000000', '1960-01-01T00:00:00.000000000', '1961-01-01T00:00:00.000000000', '1962-01-01T00:00:00.000000000', '1963-01-01T00:00:00.000000000', '1964-01-01T00:00:00.000000000', '1965-01-01T00:00:00.000000000', '1966-01-01T00:00:00.000000000', '1967-01-01T00:00:00.000000000', '1968-01-01T00:00:00.000000000', '1969-01-01T00:00:00.000000000', '1970-01-01T00:00:00.000000000', '1971-01-01T00:00:00.000000000', '1972-01-01T00:00:00.000000000', '1973-01-01T00:00:00.000000000', '1974-01-01T00:00:00.000000000', '1975-01-01T00:00:00.000000000', '1976-01-01T00:00:00.000000000', '1977-01-01T00:00:00.000000000', '1978-01-01T00:00:00.000000000', '1979-01-01T00:00:00.000000000', '1980-01-01T00:00:00.000000000', '1981-01-01T00:00:00.000000000', '1982-01-01T00:00:00.000000000', '1983-01-01T00:00:00.000000000', '1984-01-01T00:00:00.000000000', '1985-01-01T00:00:00.000000000', '1986-01-01T00:00:00.000000000', '1987-01-01T00:00:00.000000000', '1988-01-01T00:00:00.000000000', '1989-01-01T00:00:00.000000000', '1990-01-01T00:00:00.000000000', '1991-01-01T00:00:00.000000000', '1992-01-01T00:00:00.000000000', '1993-01-01T00:00:00.000000000', '1994-01-01T00:00:00.000000000', '1995-01-01T00:00:00.000000000', '1996-01-01T00:00:00.000000000', '1997-01-01T00:00:00.000000000', '1998-01-01T00:00:00.000000000', '1999-01-01T00:00:00.000000000', '2000-01-01T00:00:00.000000000', '2001-01-01T00:00:00.000000000', '2002-01-01T00:00:00.000000000', '2003-01-01T00:00:00.000000000', '2004-01-01T00:00:00.000000000', '2005-01-01T00:00:00.000000000', '2006-01-01T00:00:00.000000000', '2007-01-01T00:00:00.000000000', '2008-01-01T00:00:00.000000000', '2009-01-01T00:00:00.000000000', '2010-01-01T00:00:00.000000000', '2011-01-01T00:00:00.000000000', '2012-01-01T00:00:00.000000000', '2013-01-01T00:00:00.000000000', '2014-01-01T00:00:00.000000000', '2015-01-01T00:00:00.000000000', '2016-01-01T00:00:00.000000000', '2017-01-01T00:00:00.000000000', '2018-01-01T00:00:00.000000000', '2019-01-01T00:00:00.000000000', '2020-01-01T00:00:00.000000000'], dtype='datetime64[ns]')
- latitudePandasIndex
PandasIndex(Index([ 71.0, 70.75, 70.5, 70.25, 70.0, 69.75, 69.5, 69.25, 69.0, 68.75, ... 38.25, 38.0, 37.75, 37.5, 37.25, 37.0, 36.75, 36.5, 36.25, 36.0], dtype='float64', name='latitude', length=141))
- longitudePandasIndex
PandasIndex(Index([-10.0, -9.75, -9.5, -9.25, -9.0, -8.75, -8.5, -8.25, -8.0, -7.75, ... 32.75, 33.0, 33.25, 33.5, 33.75, 34.0, 34.25, 34.5, 34.75, 35.0], dtype='float64', name='longitude', length=181))
- valid_timePandasIndex
PandasIndex(DatetimeIndex(['1950-01-01', '1951-01-01', '1952-01-01', '1953-01-01', '1954-01-01', '1955-01-01', '1956-01-01', '1957-01-01', '1958-01-01', '1959-01-01', '1960-01-01', '1961-01-01', '1962-01-01', '1963-01-01', '1964-01-01', '1965-01-01', '1966-01-01', '1967-01-01', '1968-01-01', '1969-01-01', '1970-01-01', '1971-01-01', '1972-01-01', '1973-01-01', '1974-01-01', '1975-01-01', '1976-01-01', '1977-01-01', '1978-01-01', '1979-01-01', '1980-01-01', '1981-01-01', '1982-01-01', '1983-01-01', '1984-01-01', '1985-01-01', '1986-01-01', '1987-01-01', '1988-01-01', '1989-01-01', '1990-01-01', '1991-01-01', '1992-01-01', '1993-01-01', '1994-01-01', '1995-01-01', '1996-01-01', '1997-01-01', '1998-01-01', '1999-01-01', '2000-01-01', '2001-01-01', '2002-01-01', '2003-01-01', '2004-01-01', '2005-01-01', '2006-01-01', '2007-01-01', '2008-01-01', '2009-01-01', '2010-01-01', '2011-01-01', '2012-01-01', '2013-01-01', '2014-01-01', '2015-01-01', '2016-01-01', '2017-01-01', '2018-01-01', '2019-01-01', '2020-01-01'], dtype='datetime64[ns]', name='valid_time', freq='YS-JAN'))
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- t2m
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- 2 metre temperature
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 167
- GRIB_shortName :
- 2t
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- 2 metre temperature
- standard_name :
- unknown
- units :
- °C
At this point, the resulting dataset small enough to call compute()
on it. Remember to assign the return of the compute()
function to a new variable, so that the data is kept in memory.
We can measure the time it takes:
%%time
t2m_europe_yearly_mean_computed = t2m_europe_yearly_mean.compute()
CPU times: user 19min 36s, sys: 5min 31s, total: 25min 7s Wall time: 8min 59s
Area-weighted 2 metre temperature vs population-weighted 2 metre temperature¶
To compute the area-weighted 2 metre temperature trend in Europe, we need to spatially average the temperature data using the areas of the latitude-longitude grid cells as weights:
import numpy as np
weights = np.cos(np.deg2rad(t2m_europe_yearly_mean_computed.latitude))
weights.name = "weights"
t2m_europe_yearly_mean_area_weighted = t2m_europe_yearly_mean_computed.weighted(weights).mean(("longitude", "latitude"))
t2m_europe_yearly_mean_area_weighted
<xarray.DataArray 't2m' (valid_time: 71)> Size: 568B array([ 9.73143245, 9.54077568, 9.30266422, 9.65744633, 9.14167472, 9.19113411, 8.39374605, 9.56572026, 9.29620918, 9.78678239, 9.63911762, 9.99801575, 9.05815576, 8.92954205, 9.29800933, 8.8260963 , 9.29124349, 9.59479709, 9.21513626, 8.96015133, 9.25737186, 9.33365114, 9.48211979, 9.33031631, 9.75456766, 9.86438628, 9.00002637, 9.37511701, 8.84580254, 9.11709609, 8.87549476, 9.29087939, 9.65754524, 9.7386082 , 9.44506196, 8.77296716, 9.2368825 , 8.87974788, 9.69230407, 10.37366402, 10.38624748, 9.59619789, 9.82628151, 9.38199912, 10.123129 , 9.89640215, 9.20763148, 9.88151595, 9.81225687, 10.29441204, 10.41770865, 10.06531496, 10.3884738 , 10.31476037, 10.12192511, 10.08604738, 10.41532098, 10.57369915, 10.46482174, 10.37075119, 9.66206254, 10.51831596, 10.11687097, 10.28761378, 10.97883414, 10.86744654, 10.65587192, 10.60293839, 10.90643005, 10.8906737 , 11.19913625]) Coordinates: entireAtmosphere float32 4B 0.0 number int64 8B 0 surface float64 8B 0.0 * valid_time (valid_time) datetime64[ns] 568B 1950-01-01 ... 2020-01-01 Attributes: (12/31) GRIB_NV: 0 GRIB_Nx: 1440 GRIB_Ny: 721 GRIB_cfName: unknown GRIB_cfVarName: t2m GRIB_dataType: an ... ... GRIB_typeOfLevel: surface GRIB_units: K last_restart_dim_updated: 742824 long_name: 2 metre temperature standard_name: unknown units: °C
- valid_time: 71
- 9.731 9.541 9.303 9.657 9.142 9.191 ... 10.66 10.6 10.91 10.89 11.2
array([ 9.73143245, 9.54077568, 9.30266422, 9.65744633, 9.14167472, 9.19113411, 8.39374605, 9.56572026, 9.29620918, 9.78678239, 9.63911762, 9.99801575, 9.05815576, 8.92954205, 9.29800933, 8.8260963 , 9.29124349, 9.59479709, 9.21513626, 8.96015133, 9.25737186, 9.33365114, 9.48211979, 9.33031631, 9.75456766, 9.86438628, 9.00002637, 9.37511701, 8.84580254, 9.11709609, 8.87549476, 9.29087939, 9.65754524, 9.7386082 , 9.44506196, 8.77296716, 9.2368825 , 8.87974788, 9.69230407, 10.37366402, 10.38624748, 9.59619789, 9.82628151, 9.38199912, 10.123129 , 9.89640215, 9.20763148, 9.88151595, 9.81225687, 10.29441204, 10.41770865, 10.06531496, 10.3884738 , 10.31476037, 10.12192511, 10.08604738, 10.41532098, 10.57369915, 10.46482174, 10.37075119, 9.66206254, 10.51831596, 10.11687097, 10.28761378, 10.97883414, 10.86744654, 10.65587192, 10.60293839, 10.90643005, 10.8906737 , 11.19913625])
- entireAtmosphere()float320.0
- long_name :
- original GRIB coordinate for key: level(entireAtmosphere)
- units :
- 1
array(0., dtype=float32)
- number()int640
- long_name :
- ensemble member numerical id
- standard_name :
- realization
- units :
- 1
array(0)
- surface()float640.0
- long_name :
- original GRIB coordinate for key: level(surface)
- units :
- 1
array(0.)
- valid_time(valid_time)datetime64[ns]1950-01-01 ... 2020-01-01
array(['1950-01-01T00:00:00.000000000', '1951-01-01T00:00:00.000000000', '1952-01-01T00:00:00.000000000', '1953-01-01T00:00:00.000000000', '1954-01-01T00:00:00.000000000', '1955-01-01T00:00:00.000000000', '1956-01-01T00:00:00.000000000', '1957-01-01T00:00:00.000000000', '1958-01-01T00:00:00.000000000', '1959-01-01T00:00:00.000000000', '1960-01-01T00:00:00.000000000', '1961-01-01T00:00:00.000000000', '1962-01-01T00:00:00.000000000', '1963-01-01T00:00:00.000000000', '1964-01-01T00:00:00.000000000', '1965-01-01T00:00:00.000000000', '1966-01-01T00:00:00.000000000', '1967-01-01T00:00:00.000000000', '1968-01-01T00:00:00.000000000', '1969-01-01T00:00:00.000000000', '1970-01-01T00:00:00.000000000', '1971-01-01T00:00:00.000000000', '1972-01-01T00:00:00.000000000', '1973-01-01T00:00:00.000000000', '1974-01-01T00:00:00.000000000', '1975-01-01T00:00:00.000000000', '1976-01-01T00:00:00.000000000', '1977-01-01T00:00:00.000000000', '1978-01-01T00:00:00.000000000', '1979-01-01T00:00:00.000000000', '1980-01-01T00:00:00.000000000', '1981-01-01T00:00:00.000000000', '1982-01-01T00:00:00.000000000', '1983-01-01T00:00:00.000000000', '1984-01-01T00:00:00.000000000', '1985-01-01T00:00:00.000000000', '1986-01-01T00:00:00.000000000', '1987-01-01T00:00:00.000000000', '1988-01-01T00:00:00.000000000', '1989-01-01T00:00:00.000000000', '1990-01-01T00:00:00.000000000', '1991-01-01T00:00:00.000000000', '1992-01-01T00:00:00.000000000', '1993-01-01T00:00:00.000000000', '1994-01-01T00:00:00.000000000', '1995-01-01T00:00:00.000000000', '1996-01-01T00:00:00.000000000', '1997-01-01T00:00:00.000000000', '1998-01-01T00:00:00.000000000', '1999-01-01T00:00:00.000000000', '2000-01-01T00:00:00.000000000', '2001-01-01T00:00:00.000000000', '2002-01-01T00:00:00.000000000', '2003-01-01T00:00:00.000000000', '2004-01-01T00:00:00.000000000', '2005-01-01T00:00:00.000000000', '2006-01-01T00:00:00.000000000', '2007-01-01T00:00:00.000000000', '2008-01-01T00:00:00.000000000', '2009-01-01T00:00:00.000000000', '2010-01-01T00:00:00.000000000', '2011-01-01T00:00:00.000000000', '2012-01-01T00:00:00.000000000', '2013-01-01T00:00:00.000000000', '2014-01-01T00:00:00.000000000', '2015-01-01T00:00:00.000000000', '2016-01-01T00:00:00.000000000', '2017-01-01T00:00:00.000000000', '2018-01-01T00:00:00.000000000', '2019-01-01T00:00:00.000000000', '2020-01-01T00:00:00.000000000'], dtype='datetime64[ns]')
- valid_timePandasIndex
PandasIndex(DatetimeIndex(['1950-01-01', '1951-01-01', '1952-01-01', '1953-01-01', '1954-01-01', '1955-01-01', '1956-01-01', '1957-01-01', '1958-01-01', '1959-01-01', '1960-01-01', '1961-01-01', '1962-01-01', '1963-01-01', '1964-01-01', '1965-01-01', '1966-01-01', '1967-01-01', '1968-01-01', '1969-01-01', '1970-01-01', '1971-01-01', '1972-01-01', '1973-01-01', '1974-01-01', '1975-01-01', '1976-01-01', '1977-01-01', '1978-01-01', '1979-01-01', '1980-01-01', '1981-01-01', '1982-01-01', '1983-01-01', '1984-01-01', '1985-01-01', '1986-01-01', '1987-01-01', '1988-01-01', '1989-01-01', '1990-01-01', '1991-01-01', '1992-01-01', '1993-01-01', '1994-01-01', '1995-01-01', '1996-01-01', '1997-01-01', '1998-01-01', '1999-01-01', '2000-01-01', '2001-01-01', '2002-01-01', '2003-01-01', '2004-01-01', '2005-01-01', '2006-01-01', '2007-01-01', '2008-01-01', '2009-01-01', '2010-01-01', '2011-01-01', '2012-01-01', '2013-01-01', '2014-01-01', '2015-01-01', '2016-01-01', '2017-01-01', '2018-01-01', '2019-01-01', '2020-01-01'], dtype='datetime64[ns]', name='valid_time', freq='YS-JAN'))
- GRIB_NV :
- 0
- GRIB_Nx :
- 1440
- GRIB_Ny :
- 721
- GRIB_cfName :
- unknown
- GRIB_cfVarName :
- t2m
- GRIB_dataType :
- an
- GRIB_gridDefinitionDescription :
- Latitude/Longitude Grid
- GRIB_gridType :
- regular_ll
- GRIB_iDirectionIncrementInDegrees :
- 0.25
- GRIB_iScansNegatively :
- 0
- GRIB_jDirectionIncrementInDegrees :
- 0.25
- GRIB_jPointsAreConsecutive :
- 0
- GRIB_jScansPositively :
- 0
- GRIB_latitudeOfFirstGridPointInDegrees :
- 90.0
- GRIB_latitudeOfLastGridPointInDegrees :
- -90.0
- GRIB_longitudeOfFirstGridPointInDegrees :
- 0.0
- GRIB_longitudeOfLastGridPointInDegrees :
- 359.75
- GRIB_missingValue :
- 3.4028234663852886e+38
- GRIB_name :
- 2 metre temperature
- GRIB_numberOfPoints :
- 1038240
- GRIB_paramId :
- 167
- GRIB_shortName :
- 2t
- GRIB_stepType :
- instant
- GRIB_stepUnits :
- 1
- GRIB_totalNumber :
- 0
- GRIB_typeOfLevel :
- surface
- GRIB_units :
- K
- last_restart_dim_updated :
- 742824
- long_name :
- 2 metre temperature
- standard_name :
- unknown
- units :
- °C
To compute the population-weighted 2 metre temperature we will follow the same logic, but this time we will use the population data as weight. To make the population data and temperature data compatible we need to transform the valid_time
coordinate of the temperature data to the year
coordinate of the population data so that the two data array can be easily multiplied:
# shorten the names and replace the valid_time coordiate
temperature = t2m_europe_yearly_mean_computed.assign_coords({"year" : t2m_europe_yearly_mean_computed.valid_time.dt.year}).swap_dims({"valid_time": "year"}).drop_vars("valid_time")
population = europe_population_bands_total_computed
# compute the population wheighted temperature
t2m_europe_yearly_mean_population_weighted = (temperature * population).sum(dim=["latitude", "longitude"]) / population.sum(dim=["latitude", "longitude"])
Finally, we can compare the area-weighted temperature with the population-weighted temperature in the same graph. The first one is the average temperature experienced by the territory, while the second represents the average temperature experienced by people. Notice that the latter is higher than the fisrt.
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
plt.plot(t2m_europe_yearly_mean_area_weighted.valid_time.dt.year, t2m_europe_yearly_mean_area_weighted, marker='o', label='Area-Weighted Average Temperature')
plt.plot(t2m_europe_yearly_mean_population_weighted.year, t2m_europe_yearly_mean_population_weighted, marker='o', label='Population-Weighted Average Temperature')
plt.legend()
plt.title("Europe area Average Temperature (1950-2020)", fontsize=14)
plt.xlabel("Year", fontsize=12)
plt.ylabel("Average Temperature", fontsize=12)
plt.grid(True)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()